# A Developers Survey of Artificial Intelligence

BARRY S. STAHL - @BSSTAHL

#### About Me



I think it is noteworthy that I am the type of person who has both favorite physicists and favorite mathematicians.

8:35 PM - 16 Apr 2017 from Phoenix, AZ

| Favorite Physicists | Favorite Mathematicians |
|---------------------|-------------------------|
| Harold "Hal" Stahl  | Ada Lovelace            |
| Carl Sagan          | Alan Turing             |
| Neil Degrasse Tyson | Johannes Kepler         |
| Nikola Tesla        | René Descartes          |
| Marie Curie         | Isaac Newton            |
| Richard Feynman     | Leonardo Fibonacci      |
| Albert Einstein     | George Boole            |

Other notables: Niels Bohr, Galileo Galilei, Michael Faraday, Blaise Pascal, Johann Gauss, Grace Hopper, Stephen Hawking, Marvin Minsky, Daphne Koller, Benoit Mandelbrot

#### About Me

## https://meetup.com/azgivecamp/

# Join us!

# What do I mean by "Artificial Intelligence"?



Artificial Intelligence

Machine Learning

What do I mean by "Artificial Intelligence"?

A Computational System that behaves rationally

1)Makes decisions
2)Attempts to make the best decision
 a)Best available understanding (model)
 b)Best available information (data)
3)May act on those decisions (automation)

# What do I mean by "Artificial Intelligence"?



Artificial Intelligence

Decision Support Systems

## When do I Need an AI?

When I need to make decisions at scale

- Many Decisions
- Very Quickly
- Large *Datasets*
- Large Solution Space

Als are not (yet) great when the Problem Space is large

See http://www.cognitiveinheritance.com/post/Scalable-Decision-Making.aspx

## What do I Need for an AI?

#### Data

• Information about the state of the problem space

#### Model

• Representation of the possible methods of making the decision

Test Data

Method of validating the model

## Types of AI Models

#### Logic

- Reducible to conditionals
  - Object Oriented (everything we've ever done before)
  - Rules Engine

#### Probabilistic/Learning

- Results in a prediction of best solution often derived from earlier data
  - Neural/Bayesian Networks
  - Genetic Algorithms

#### Search/Optimization

- Based on reducing and searching the Solution Space
  - Dynamic Programming
  - Linear Programming

# Logical Models

MODELS OF ARTIFICIAL INTELLIGENCE THAT REDUCE TO A SERIES OF CONDITIONALS

## Features of Logical Models

| Feature                   | Expectation                   | Comments                                            |
|---------------------------|-------------------------------|-----------------------------------------------------|
| Results are explainable   | Generally                     | Code is highly imperative                           |
| Correctness is understood | Generally                     | Code is highly imperative                           |
| Easy to design            | Sometimes                     | Solutions must be fully understood                  |
| Easy to build/maintain    | Very                          | Most devs are comfortable with logic implementation |
| Solution Discoverability  | Low                           | Solutions will only deliver pre-conceived answers   |
| Works well                | Problem & solution understood | Code is highly imperative                           |

#### Rules of Chutes & Ladders



- For 2-6 Players
- All start at same space
- Start is random (0-25)
- Each player spins to determine how many spaces to move (1-6)
- Player has option to take or skip chute/ladder when leaving origin space
- If you can move the correct spaces, you must - if you can't, your turn is skipped

#### Project Structure



## Logical Models in the Demo Code

#### **Object-Oriented Logic**

- Greedy Algorithm
  - Usually the best place to start
  - Selects the highest value space

#### • Linear Strategy

- Never take a chute or ladder
- Obviously not the best strategy
- Aggressively Bad Strategy
  - Selects the lowest value space
  - Can probably never win
  - Used as a hideous warning

#### **Rules Engine**

- Greedy
- Linear
- Take all Ladders

# Probabilistic/Learning Models

MODELS OF ARTIFICIAL INTELLIGENCE THAT RESULT IN A PREDICTION OFTEN DERIVED FROM EARLIER DATA

## Types of Probabilistic/Learning Models

- Probabilistic Graphical Models Represent conditional dependencies in a graph
  - Bayesian network
  - Markov Model
  - Clique Tree
- Evolutionary Algorithms Evolve behavior based on natural models
  - Genetic Algorithms
  - Ant-Colony Optimization
  - Bees Algorithm

#### Probabilistic Graphical Models



- Conditional dependencies are indicated by edges
  - An undirected edge represents correlation
  - A directed edge represents causation
- Used for
  - Text Classification
  - Spam filtering
  - Recommendation systems
  - Causal Inference

#### Where to Eat Bot

**BSStahl**: I'd like to try Italian food for lunch

**RobRich**: Italian sounds good, can we meet in Chandler somewhere

**DigitalDrummerJ**: I need to be back to the office by 2pm

WhereToEatBot: *Floridino's Pizza & Pasta* is an Italian restaurant in Chandler rated 4 of 5 stars with a table available at 12:30pm. Should I book it for you?

**BSStahl**: Yes, book it for 3 people

WhereToEatBot: Your reservation for 3 at Floridino's is confirmed. Reservation code: AT7434

## LUIS - Language Understanding Intelligent Service

{"query": "I'd like to try italian nearby",

"topScoringIntent": { "intent": "AddFocus", "score": 0.249762028 },

"intents": [

```
{ "intent": "AddFocus", "score": 0.249762028 },
```

{ "intent": "AddFilter", "score": 0.233643577 },

{ "intent": "RemoveFilter", "score": 0.218146175 },

```
{ "intent": "RemoveFocus", "score": 0.00575467059 },
```

```
{"intent": "None", "score": 0.004777815 },
```

```
{ "intent": "Start Conversation", "score": 0.0009793207 }
```

"entities": [

{ "entity": "italian", "type": "Cuisine", "startIndex": 16, "endIndex": 22, "score": 0.6817578 }]}

#### Where to Eat Bot Process



## Features of Probabilistic Models

| Feature                   | Expectation              | Comments                                                                           |
|---------------------------|--------------------------|------------------------------------------------------------------------------------|
| Results are explainable   | Rarely                   | Many models produce no indication<br>whatsoever about why a solution was<br>chosen |
| Correctness is understood | Somewhat                 | Predictable but variable                                                           |
| Easy to design            | Somewhat                 | Some models can produce good results without a full understanding of the problem   |
| Easy to build/maintain    | No                       | Tools are available to help                                                        |
| Solution Discoverability  | High                     | Solutions may surprise the original implementers                                   |
| Works Well                | Understanding is limited | Can help identify solutions even when the mechanism isn't fully understood         |

# Probabilistic Models for Chutes & Ladders

- Features of this problem
  - Huge solution space
  - Non-deterministic system
    - Human opponent
    - Unpredictable start location
    - Unpredictable spins
- Possible implementations
  - PGM: Correlate moves -> wins
  - Genetic Algorithm: Evolve the strategy

-pportunity!

## Genetic Algorithms

- Simulate Darwinian Evolution
  - Each candidate solution is defined by its properties (chromosomes)
  - A fitness function is used to determine which solutions "survive"
  - Surviving solutions may mutate and evolve other solutions
  - Optimality is never guaranteed
- Define the DNA of a Solution
  - Varies greatly by problem
  - Ideally, each option is a chromosome
- Define a Fitness Function
  - How do we know if the solution is good?
  - If we can't define a good fitness function we probably can't use a Genetic Algorithm
- Determine how the Solution Evolves
  - What solutions evolve and under what circumstances
  - How does the DNA change to evolve the solution

#### DNA of Chutes & Ladders

| Starting Point | Spin 🔽 | Option 1 🔽 | Option 2 - | Option 3 🔽 | Option 4 🔽 | Option 5 🔽 |
|----------------|--------|------------|------------|------------|------------|------------|
| 45             | 3      | 48         | 26         |            |            |            |
| 45             | 4      | 49         | 27         |            |            |            |
| 45             | 5      | 50         | 11         | 28         |            |            |
| 45             | 6      | 51         | 12         | 29         | 84         |            |
| 46             | 2      | 48         | 26         |            |            |            |
| 46             | 3      | 49         | 27         |            |            |            |
| 46             | 4      | 50         | 11         | 28         |            |            |
| 46             | 5      | 51         | 12         | 29         | 84         |            |
| 46             | 6      | 52         | 67         | 13         | 30         | 85         |

299 Chromosomes 679 Total Selections 1.54 x 10<sup>103</sup> Combinations



#### Our Genetic Algorithm



# Search/Optimization Models

MODELS OF ARTIFICIAL INTELLIGENCE BASED ON REDUCING AND SEARCHING THE SOLUTION SPACE

## Types of Search/Optimization Models

- Constraint Programming
  - Linear Programming
  - Mixed-Integer Programming
- Other Search Methods
  - Local Search
  - Branch and Bound
  - Dynamic Programming

Building AI Solutions with Google OR-Tools

## Features of Search/Optimization Models

| Feature                   | Expectation          | Comments                                                                             |
|---------------------------|----------------------|--------------------------------------------------------------------------------------|
| Results are explainable   | Sometimes            | Highly dependent on implementation                                                   |
| Correctness is understood | Somewhat             | Highly dependent on implementation                                                   |
| Easy to design            | No                   | Requires a detailed knowledge of the problem to design the model                     |
| Easy to build/maintain    | No                   | Tools are available to help                                                          |
| Solution Discoverability  | Limited              | Most implementations will powerfully limit the possibilities of the results returned |
| Works Well                | Large solution space | Many optimization techniques function well with inconceivably large solution spaces  |

# Optimization Models for Chutes & Ladders

- Mixed Integer Programming
  - Based on Constraint/Linear Programming
  - Uses boolean variables to indicate if an option is selected
  - Google OR-Tools can help implement
- Shortest Path Algorithm
  - Dijkstra's Algorithm
    - Based on Dynamic Programming



## Dynamic Programming

- Break a problem down into smaller, simpler subproblems
- Solve each subproblem only once, building on the previous
- Memoize (cache) the solution to each subproblem
- Guarantees an optimal solution
- Calculating the Fibonacci sequence is a good candidate for this technique

# Dynamic Programming of Chutes & Ladders



00 01 02 03 04 05 06 07 08 09 19 18 17 16 15 14 13 12 11 10 01 02 03 04 05 06 07 08 09 10 20 19 18 17 16 15 14 13 12 11 21 22 23 24 25 26 27 28 29 15 25 24 23 22 21 20 19 18 17 16 26 27 28 29 23 24 25 26 27 28 24 23 22 21 20 19 18 17 30 29 25 26 27 28 29 30 31 32 33 34 29 34 33 32 33 32 31 30 29 35

# Dynamic Programming of Chutes & Ladders



# Hybrid Models

MODELS OF ARTIFICIAL INTELLIGENCE THAT COMBINE THE BEST OF MULTIPLE TECHNIQUES

## Employee Assignment Problem



#### Employee Assignment Process

# Employee Assignment Process



## Features of AI Model Types

| Feature                   | Logical                       | Probabilistic            | Search/Optimization  |
|---------------------------|-------------------------------|--------------------------|----------------------|
| Results are explainable   | Generally                     | Rarely                   | Sometimes            |
| Correctness is understood | Generally                     | Somewhat                 | Somewhat             |
| Easy to design            | Sometimes                     | Somewhat                 | No                   |
| Easy to build/maintain    | Very                          | Νο                       | No                   |
| Solution Discoverability  | Low                           | High                     | Limited              |
| Works well                | Problem & solution understood | Understanding is limited | Large solution space |

## Summary

Artificial Intelligence is about making automated decisions

Logical methods reduce the problem to conditionals

- Object Oriented
- Rules Engine

Probabilistic/Learning methods result in a prediction derived from earlier data

- Neural/Bayesian Networks
- Genetic Algorithms

Search/Optimization methods are based on reducing and searching the solution space

- Dynamic Programming
- Linear Programming

Hybrid methods allow us to take advantage of the best features of multiple model types

#### Resources

#### Code

<u>https://github.com/bsstahl/AIDemos</u>

#### Articles

- <u>http://www.cognitiveinheritance.com/post/Scalable-Decision-Making.aspx</u>
- <u>http://www.cognitiveinheritance.com/post/AI-That-Can-Explain-Why.aspx</u>
- <u>http://www.cognitiveinheritance.com/post/An-Example-of-a-Hybrid-AI-Implementation.aspx</u>

#### Videos

<u>https://youtu.be/zZAobExOMB0</u>

#### Courseware

- <u>https://www.coursera.org/specializations/probabilistic-graphical-models</u>
- https://www.coursera.org/learn/discrete-optimization

#### Tools

- <u>https://azure.microsoft.com/en-us/services/cognitive-services/</u>
- <u>https://www.ibm.com/watson-analytics</u>
- <u>https://developers.google.com/optimization/</u>